Traversal for Binary Tree

Kuan-Yu Chen (i & %)

2020/10/14 @ TR-212, NTUST

Review

« A tree is a non-linear data structure, which is mainly used to
store data that is hierarchical in nature

— General Trees

— Forests

— Binary Trees

— Expression Trees

— Tournament Trees

Linked List.

A linked list, in simple terms, is a linear collection of data
elements

— Data elements are called nodes

— Each node contains one or more data fields and a pointer to
the next node

Singly linked list is the simplest type of linked list in which
every node contains some data and a pointer to the next node

START

> 1

Y
[N)
Y
w
Y
IS
Y
Ul
A 4
o
Y
~
>

struct node

{

int data;
struct node *next;

}s

Linked List..

o Circular linked list is a simple variant, where the last node
contains a pointer to the first node of the list

START

L

Y
N
Y
w
Y
S
Y
U
Y
o
Y
~

« Doubly linked list or a two-way linked list is a more complex
type of linked list
— It contains a pointer to the next as well as the previous node in
the sequence

— The linked list consists of three parts—data, a pointer to the

next node, and a pointer to the previous node
struct node

START {

struct node *prev;
| int data;
struct node *next;

Y
>
=
Y
[\S]
A
Y
w
A
Y
IS
A
Y
Ul
>

A

}s

Linked List...

o Circular doubly linked list or a circular two-way linked list is
a more complex type of linked list

— It contains a pointer to the next as well as the previous node in
the sequence

« The next field of the last node stores the address of the first node

of the list
 The previous field of the first field stores the address of the last
node
START
N < 2| = 3| [|4| = |-

Linked List vs. Array

« Both arrays and linked lists are a linear collection of data
elements

— A linked list does not store its nodes in consecutive memory
locations

— A linked list does not allow random access of data

« Nodes in a linked list can be accessed only in a sequential manner

— A linked list can add any number of elements in the list

» This is not possible in case of an array

START

Y
=
Y
N
Y
w
Y
S
Y
(V5]
Y
(o)}
Y
~
>

Implementation for Queue by Link List.

 Although creating a queue by an array is easy, its drawback is
that the array must be declared to have some fixed size

— If the array size cannot be determined in advance, the linked
representation is used

Implementation for Queue by Link List..

e Declare

#include <stdio.h>
#include <conio.h>
#include <malloc.h>
struct node

{
int data;
struct node *next;
¥
struct queue
{
struct node *front;
struct node *rear;
}s

struct queue *q;

void create_queue(struct queue *);

struct queue *insert(struct queue *,int);
struct queue *delete element(struct queue *);

Implementation for Queue by Link List...

« Create a queue

void create queue(struct queue *Qq)

{
q—>rear = NULL;

q—> front = NULL;

Implementation for Queue by Link List....

 For insertion

struct queue *insert(struct queue *qg,int val)

{
struct node *ptr;
ptr = (struct node*)malloc(sizeof(struct node));
ptr—data = val;
if(q—> front == NULL)
{
q—>front = ptr;
q—>rear = ptr;
q—> front —> next = q—>rear —>next = NULL;
}
else |
{ R I s A B 0 T B 0 B B P B O B R B
g —> rear — next = ptr; Front Rear
q—>rear = ptr; F
q—>rear —>next = NULL; CT>{7] P[PPI PEIIHEX
} Front Rear
return q; 4
}

10

Implementation for Queue by Link List.....

e For deletion
struct queue *delete _element(struct queue *q)

{
struct node *ptr;
ptr = q—> front;
if(gq— front == NULL)
printf("\n UNDERFLOW");
else
{
q—> front = q—> front —> next;
printf("\n The value being deleted is : %d", ptr—data);
free(ptr);
}
return q;
}

Lol 1 7] 18] 14l 2] 1 6] 151x]

Front Rear

Ul =7 3] 14l P2l 6] 1 5] X

Front Rear 11

Priority Queue

 Linked Representation of a Priority Queue

— Every node of the list will have three parts:

1. the information or data part

2. the priority number of the element

3. the address of the next element

FRONT

1

4

4

AW N =

A1 —B|2| TC| 3| >

D

> E

— From the example

« Since A has a priority number 1 and B has a priority number 2,
then A will be processed before B as it has higher priority than B

« We cannot make out whether 4 was inserted before E or whether

E joined the queue before A

« We can definitely say that C was inserted in the queue before D

because when two elements have the same priority

12

Binary Trees

In the linked representation of a binary tree, every node will
have three parts: the data element, a pointer to the left node,
and a pointer to the right node

struct node {
struct node *left;
int data;
struct node *right;

}s

Traversing Binary Tree.

Traversing a binary tree is the process of visiting each node
in the tree exactly once in a systematic way

— There are different algorithms for tree traversals
 Pre-order Traversal °

« Post-order Traversal

e In-order Traversal

« Level-order Traversal o e

— Takea + b + ¢ X d — e for example
e {a+[(b+c)xd]}—e) o o

Pre-order: — +a X=+ bcde

Post-order: abc -~ d X +e — o o

In-order:a+b+cXd—e

Level-order: — +ea X+ dbc o e

Traversing Binary Tree..

Traversing a binary tree is the process of visiting each node

in the tree exactly once in a systematic way

— There are different algorithms for tree traversals

e Pre-order Traversal °
» ABDCEFGHI 9 e

« Post-order Traversal

» DBHIGFECA (® (E)
 In-order Traversal
» BDAEHGIFC G
« Level-order Traversal e
» ABCDEFGHI
OJO

— Different algorithms differ in the order in which the nodes are

visited

15

In-order

Step 1: Repeat Steps 2 to 4 while TREE != NULL
Step 2: INORDER(TREE —> LEFT)
Step 3: Write TREE —> DATA

Step 4: INORDER(TREE —> RIGHT)
[END OF LOOP]
Step 5: END

In-order: BDAEHGIFC (&)

16

Pre-order

Step 1: Repeat Steps 2 to 4 while TREE != NULL
Step 2: Write TREE —> DATA
Step 3: PREORDER(TREE —> LEFT)

Step 4: PREORDER(TREE —> RIGHT)

[END OF LOOP]
Step 5: END

Pre-order: ABDCEFGHI (&)

17

Post-order

Step 1: Repeat Steps 2 to 4 while TREE != NULL
Step 2: POSTORDER(TREE —> LEFT)
Step 3: POSTORDER(TREE —> RIGHT)

Step 4: Write TREE —> DATA
[END OF LOOP]
Step 5: END

Post-order: DBHIGFECA (&)

18

Constructing Binary Tree from Traversal.

« We can construct a binary tree if we are given at least two
traversal results

— In-order traversal

« The in-order traversal result will be used to determine the left

and the right child nodes

— Either pre-order or post-order traversal

 The pre-order/post-order can be used to determine the root
node

19

Constructing Binary Tree from Traversal..

« Take in-order + pre-order for example
— In-order: DBEAF CG
— Pre-order: ABDECF G

DBEAFCG DBEAFCG DBEAFCG
BDECFG AéDECFG ABDEéFG

20

Constructing Binary Tree from Traversal...

« Take in-order + post-order for example
— In-order: DBHEITAF]CG
— Post-orderr DHIEBJFGCA

DBHEIAF]CG DBHEIAF]CG

DHIEB]JF GOA DHIEB)]FGCA
DBHEIAF]CG DBHEIAF]CG DBHEIAF]CG
DHIEB]FGC DHIEB] GCA DHI B]FGCA

Constructing Binary Tree from Traversal....

Steps for constructing a binary tree from traversal sequences

1. Use the pre-order/post-order sequence to determine the root
node of the tree

2. Elements on the left side of the root node in the in-order
traversal sequence form the left sub-tree of the root node

3. Similarly, elements on the right side of the root node in the in-
order traversal sequence form the right sub-tree of the root
node

4. Recursively select each element from pre-order/post-order
traversal sequence and create its left and right sub-trees from
the in-order traversal sequence

22

By Looking!.

 Given a infix expression (A + B) X C ~ (D — E + F), please
write down the prefix and postfix expressions

/\
X —
T PN prefix element
/+\ ¢ D P infix
A B E F

23

By Lookingl!..

 Given a infix expression (A + B) X C ~ (D — E + F), please
write down the prefix and postfix expressions
— Prefix

prefix | element

infix

~X +ABC — D - EF

24

By Looking!...

 Given a infix expression (A + B) X C ~ (D — E + F), please
write down the prefix and postfix expressions
— Postfix

prefix element

infix

25

By Looking!....

 Given a infix expression (A + B) X C ~ (D — E + F), please
write down the prefix and postfix expressions

— Infix

prefix element

infix

A+BXxXC=D—-—E-~+F

26

Threaded Binary Trees

A threaded binary tree is the same as that of a binary tree but
with a difference in storing the NULL pointers

— The space that is wasted in storing a NULL pointer can be
efficiently used to store some other useful piece of information

One-way Threaded Trees

- A one-way threaded tree is also called a single-threaded
tree

— If the thread appears in the , then it will point to the
of the node

 Such a tree is called a right-threaded binary tree

L 1 ~

/121N /131N
/’\\ /’\\
BN x5//6\x7\

x| 8|7 x| 9]\ x [10] 7 x [11] x 12| x

— If the thread appears in the left field, then the left field will be
made to point to the in-order predecessor of the node

« Such a tree is called a left-threaded binary tree 28

Two-way Threaded Trees

 In a two-way threaded tree, also called a double-threaded
tree, threads will appear in both the left and the right field of
the node

— The left field will point to the in-order predecessor of the node,
and the right field will point to its successor

— A two-way threaded binary tree is also called a fully threaded
binary tree

29

Questions?

kychen@mail.ntust.edu.tw

30

