
Traversal for Binary Tree

Kuan-Yu Chen (陳冠宇)

2020/10/14 @ TR-212, NTUST

2

Review

• A tree is a non-linear data structure, which is mainly used to
store data that is hierarchical in nature
– General Trees
– Forests

– Binary Trees

– Expression Trees

– Tournament Trees

3

Linked List.

• A linked list, in simple terms, is a linear collection of data
elements
– Data elements are called nodes
– Each node contains one or more data fields and a pointer to

the next node

• Singly linked list is the simplest type of linked list in which
every node contains some data and a pointer to the next node

4

Linked List..

• Circular linked list is a simple variant, where the last node
contains a pointer to the first node of the list

• Doubly linked list or a two-way linked list is a more complex
type of linked list
– It contains a pointer to the next as well as the previous node in

the sequence
– The linked list consists of three parts—data, a pointer to the

next node, and a pointer to the previous node

5

Linked List…

• Circular doubly linked list or a circular two-way linked list is
a more complex type of linked list
– It contains a pointer to the next as well as the previous node in

the sequence
• The next field of the last node stores the address of the first node

of the list

• The previous field of the first field stores the address of the last
node

6

Linked List vs. Array

• Both arrays and linked lists are a linear collection of data
elements
– A linked list does not store its nodes in consecutive memory

locations

– A linked list does not allow random access of data
• Nodes in a linked list can be accessed only in a sequential manner

– A linked list can add any number of elements in the list
• This is not possible in case of an array

7

Implementation for Queue by Link List.

• Although creating a queue by an array is easy, its drawback is
that the array must be declared to have some fixed size
– If the array size cannot be determined in advance, the linked

representation is used

8

Implementation for Queue by Link List..

• Declare

9

Implementation for Queue by Link List...

• Create a queue

10

Implementation for Queue by Link List....

• For insertion

11

Implementation for Queue by Link List.....

• For deletion

12

Priority Queue

• Linked Representation of a Priority Queue
– Every node of the list will have three parts:

1. the information or data part

2. the priority number of the element

3. the address of the next element

– From the example
• Since 𝐴 has a priority number 1 and 𝐵 has a priority number 2,

then 𝐴 will be processed before 𝐵 as it has higher priority than 𝐵

• We cannot make out whether 𝐴 was inserted before 𝐸 or whether
𝐸 joined the queue before 𝐴

• We can definitely say that 𝐶 was inserted in the queue before 𝐷
because when two elements have the same priority

13

Binary Trees

• In the linked representation of a binary tree, every node will
have three parts: the data element, a pointer to the left node,
and a pointer to the right node

14

Traversing Binary Tree.

• Traversing a binary tree is the process of visiting each node
in the tree exactly once in a systematic way
– There are different algorithms for tree traversals

• Pre-order Traversal

• Post-order Traversal

• In-order Traversal

• Level-order Traversal

– Take 𝑎 + 𝑏 ÷ 𝑐 × 𝑑 − 𝑒 for example
• 𝑎 + (𝑏 ÷ 𝑐) × 𝑑 − 𝑒

• Pre-order: − +𝑎 ×÷ 𝑏𝑐𝑑𝑒

• Post-order: 𝑎𝑏𝑐 ÷ 𝑑 × +𝑒 −

• In-order: 𝑎 + 𝑏 ÷ 𝑐 × 𝑑 − 𝑒

• Level-order: − +𝑒𝑎 ×÷ 𝑑𝑏𝑐

15

Traversing Binary Tree..

• Traversing a binary tree is the process of visiting each node
in the tree exactly once in a systematic way
– There are different algorithms for tree traversals

• Pre-order Traversal

➢ 𝐴𝐵𝐷𝐶𝐸𝐹𝐺𝐻𝐼

• Post-order Traversal

➢ 𝐷𝐵𝐻𝐼𝐺𝐹𝐸𝐶𝐴

• In-order Traversal

➢ 𝐵𝐷𝐴𝐸𝐻𝐺𝐼𝐹𝐶

• Level-order Traversal

➢ 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻𝐼

– Different algorithms differ in the order in which the nodes are
visited

16

In-order

• In-order: BDAEHGIFC

17

Pre-order

• Pre-order: ABDCEFGHI

18

Post-order

• Post-order: DBHIGFECA

19

Constructing Binary Tree from Traversal.

• We can construct a binary tree if we are given at least two
traversal results
– In-order traversal

• The in-order traversal result will be used to determine the left
and the right child nodes

– Either pre-order or post-order traversal
• The pre-order/post-order can be used to determine the root

node

20

Constructing Binary Tree from Traversal..

• Take in-order + pre-order for example
– In-order: 𝐷 𝐵 𝐸 𝐴 𝐹 𝐶 𝐺

– Pre-order: 𝐴 𝐵 𝐷 𝐸 𝐶 𝐹 𝐺

𝐷 𝐵 𝐸 𝐴 𝐹 𝐶 𝐺

𝐴 𝐵 𝐷 𝐸 𝐶 𝐹 𝐺

𝐷 𝐵 𝐸 𝐴 𝐹 𝐶 𝐺

𝐴 𝐵 𝐷 𝐸 𝐶 𝐹 𝐺

𝐷 𝐵 𝐸 𝐴 𝐹 𝐶 𝐺

𝐴 𝐵 𝐷 𝐸 𝐶 𝐹 𝐺

21

Constructing Binary Tree from Traversal…

• Take in-order + post-order for example
– In-order: 𝐷 𝐵 𝐻 𝐸 𝐼 𝐴 𝐹 𝐽 𝐶 𝐺

– Post-order: 𝐷 𝐻 𝐼 𝐸 𝐵 𝐽 𝐹 𝐺 𝐶 𝐴

𝐷 𝐵 𝐻 𝐸 𝐼 𝐴 𝐹 𝐽 𝐶 𝐺

𝐷 𝐻 𝐼 𝐸 𝐵 𝐽 𝐹 𝐺 𝐶 𝐴

𝐷 𝐵 𝐻 𝐸 𝐼 𝐴 𝐹 𝐽 𝐶 𝐺

𝐷 𝐻 𝐼 𝐸 𝐵 𝐽 𝐹 𝐺 𝐶 𝐴

J

𝐷 𝐵 𝐻 𝐸 𝐼 𝐴 𝐹 𝐽 𝐶 𝐺

𝐷 𝐻 𝐼 𝐸 𝐵 𝐽 𝐹 𝐺 𝐶 𝐴

𝐷 𝐵 𝐻 𝐸 𝐼 𝐴 𝐹 𝐽 𝐶 𝐺

𝐷 𝐻 𝐼 𝐸 𝐵 𝐽 𝐹 𝐺 𝐶 𝐴

𝐷 𝐵 𝐻 𝐸 𝐼 𝐴 𝐹 𝐽 𝐶 𝐺

𝐷 𝐻 𝐼 𝐸 𝐵 𝐽 𝐹 𝐺 𝐶 𝐴

I I I

22

Constructing Binary Tree from Traversal….

• Steps for constructing a binary tree from traversal sequences
1. Use the pre-order/post-order sequence to determine the root

node of the tree

2. Elements on the left side of the root node in the in-order
traversal sequence form the left sub-tree of the root node

3. Similarly, elements on the right side of the root node in the in-
order traversal sequence form the right sub-tree of the root
node

4. Recursively select each element from pre-order/post-order
traversal sequence and create its left and right sub-trees from
the in-order traversal sequence

23

By Looking!.

• Given a infix expression (𝐴 + 𝐵) × 𝐶 ÷ (𝐷 − 𝐸 ÷ 𝐹), please
write down the prefix and postfix expressions

𝐴 𝐵

+ 𝐶

×

𝐸 𝐹

÷𝐷

−

÷

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 postfix

infix

prefix

24

By Looking!..

• Given a infix expression (𝐴 + 𝐵) × 𝐶 ÷ (𝐷 − 𝐸 ÷ 𝐹), please
write down the prefix and postfix expressions
– Prefix

𝐴 𝐵

+ 𝐶

×

𝐸 𝐹

÷𝐷

−

÷

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 postfix

infix

prefix

÷× +𝐴𝐵𝐶 − 𝐷 ÷ 𝐸𝐹

25

By Looking!...

• Given a infix expression (𝐴 + 𝐵) × 𝐶 ÷ (𝐷 − 𝐸 ÷ 𝐹), please
write down the prefix and postfix expressions
– Postfix

𝐴 𝐵

+ 𝐶

×

𝐸 𝐹

÷𝐷

−

÷

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 postfix

infix

prefix

𝐴𝐵 + 𝐶 × 𝐷𝐸𝐹 ÷−÷

26

By Looking!....

• Given a infix expression (𝐴 + 𝐵) × 𝐶 ÷ (𝐷 − 𝐸 ÷ 𝐹), please
write down the prefix and postfix expressions
– Infix

𝐴 𝐵

+ 𝐶

×

𝐸 𝐹

÷𝐷

−

÷

𝑒𝑙𝑒𝑚𝑒𝑛𝑡 postfix

infix

prefix

𝐴 + 𝐵 × 𝐶 ÷ 𝐷 − 𝐸 ÷ 𝐹

27

Threaded Binary Trees

• A threaded binary tree is the same as that of a binary tree but
with a difference in storing the NULL pointers
– The space that is wasted in storing a NULL pointer can be

efficiently used to store some other useful piece of information

28

One-way Threaded Trees

• A one-way threaded tree is also called a single-threaded
tree
– If the thread appears in the right field, then it will point to the

in-order successor of the node
• Such a tree is called a right-threaded binary tree

– If the thread appears in the left field, then the left field will be
made to point to the in-order predecessor of the node
• Such a tree is called a left-threaded binary tree

29

Two-way Threaded Trees

• In a two-way threaded tree, also called a double-threaded
tree, threads will appear in both the left and the right field of
the node
– The left field will point to the in-order predecessor of the node,

and the right field will point to its successor

– A two-way threaded binary tree is also called a fully threaded
binary tree

30

Questions?

kychen@mail.ntust.edu.tw

